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Goals and Objectives    

Overall Goal

Advance the understanding of  an All-Organic Water-based RFBs for 
cost-effective large-scale energy storage.

Specific Objectives 

• Understand the mechanisms of degradation to formulate design rules 
for new molecules  

• Design and demonstrate inexpensive positive side organic molecules 
that can be cycled repeatedly without degradation 
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Advances Made at USC in RFBs

• First ever aqueous all-organic redox flow 
batteries based on quinone derivatives 
(BQDS/AQDS) in acidic media.

• Mitigated crossover by molecular design and 
symmetrical cycling.

• Demonstrated cycling of Michael-Reaction 
resistant positive side materials (DHDMBS) 

• Scale up and demonstration (ITN) of 
1kW/2KWh all-organic redox flow batteries 
(DHDMBS/AQDS) 4000 Ah/ 4.5 h per cycle 
with <0.01% loss/hour.

• Developed Iron sulfate/AQDS system for 
stable cycling over 1000 cycles with < 8 x10-6 

%/hour. 3



Capacity Degradation Modes and Rates
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(5x 10-4 %/ hour)

• For realizing LCOS of  < 5 cents/kWh  
degradation rates must be < 5x10-4 

%/hour  (<500 ppm %/hour)

Michael Reaction (1,4-addition) with a nucleophile 
such as water, hydroxide ion or phenoxide ion.  
• Loss of capacity
• Decrease of cell voltage

Desulfonation or loss of the sulfonic acid group
• Loss of solubility 
• Decrease of cell voltage  

• Capacity loss in water-based organic 
systems arises from two major 
processes: 
1. Chemical transformations  

2. Molecular crossover  



Michael Reaction or 1,4-Addition

• Occurs more readily on electron-deficient 
systems
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In Acid 

In Alkali



Desulfonation Processes (acid medium)
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Proto-desulfonation in Acid:   Loss of sulfonic acid group  



Desulfonation Processes (alkaline medium)
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• Oxidative Hydroxy-desulfonation

• Nucleophilic (SNAR) Hydroxy-desulfonation



Technical Approach 

• To reduce the propensity for Desulfonation and Michael Reactions

- Examine the effect of substitution by alkyl and phenyl groups on 
benzoquinone rings  

- Examine these reactivities in bi-functional molecules

• Adding functional groups to increase solubility without increasing reactivity.    

• Developing procedures for in-house synthesis of compounds 

• Follow the stability changes by NMR and GC-MS to determine effects of long-
term cycling 

• Electrochemical kinetics testing using RDE and CV on glassy carbon/graphite  

• Establishing solubility in charged and discharged state

• Establish decay rates by extended cycling  in symmetric cell configuration  in 
flow cells (25 cm2)
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Tasks to Address Challenges 

• Task 1. Synthesis, purification and scale-up of materials. 

• Task 2. Electrochemical characterization of charge/discharge 
reversibility and electrode potential. 

• Task 3. Characterization of solubility and diffusion coefficient 

• Task 4. Crossover rate studies 

• Task 5. Passive and active durability studies using flow cell and 
electrolysis 

• Task 6. Reporting, Reviews and Publication 
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Accomplishments in the past year

• Several promising benzoquinone derivatives have been synthesized 
and tested in acid and alkaline media. 

• Preliminary results show these molecules possess distinct reactivity 
and stability based on the substituent groups. 

• Verified that anthraquinone-based molecules can be stabilized to 
make positive side materials and also allow for bifunctional activity to 
achieve high cell voltage. 

• Verified the long-term cycling behavior of stabilized redox materials.
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Three Classes of Benzoquinone-derived
Positive Side Materials
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Alkyl-substituted

Aryl-substituted Anthraquinone–derived 



Studies on 6-methyl hydroquinone-3-sulfonic acid (MMS)

12

MMS

Synthesis 

• Cyclic voltammograms
suggest  excellent 
reversibility.

• Slow chemical 
transformations are not 
captured in a CV. 



Cycling studies on MMS
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Cycling of MMS/ AQDS cell  in Acid Medium
100 mA/cm2,  25 cm2 , Graphite Felts  

Charge

Discharge

CV at 50 mV/s,Graphite Electrode
in 1 M Sulfuric Acid 

Starting Material 

After 516 cycles

MMS-1 MMS-2

After 516 cycles:  Significant Loss 
of the Aromatic Protons and 
appearance of multiple aliphatic 
peaks

NMR  Analysis-Starting Material  



Polymerization of MMS

• Shown: dimerization

• Process can continue (chain propagation) to form redox active 
oligomers

14



CV Characterization of O3MMS,  O4MMS, O3MDS
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Tertiary-Butyl Substituted Orthobenzoquinone
monosulfonic acid (O4TBMS)
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Synthesis
1M  O4TBMS/ 1M AQDS cell cycled at 100 
mA/cm2 in sulfuric acid 

Potential shift to positive values upon sulfonation

NMR  
Analysis 
confirms  fast 
single step 
hydroxylation 



Aryl-Substituted benzoquinones
PHQS, PHQDS,  Aryl sulfones
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Aryl sulfones 
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Bifunctional Anthraquinone –Derived Molecules-
Alizarin Red  in Alkaline Media
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Hydroxydesulfonation of Alizarin Red
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NMR  Analysis of cycled Alizarin Red  
Confirms the formation of 
the tetrahydroxylated
product



Purpurin-a viable pathway to using 
anthraquinone derivatives
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Other Promising Bifunctional Molecules Studied
Compound Structure E1/2 (Volts) vs MMO Bi-functional Material 

Potential 

1,2,4-trihydroxy 
anthraquinone 

O

O

OH

OH

OH  

-0.84 V Yes, 840 mV difference 

1,4-dihydroxy 
anthraquinone 

O

O

OH

OH  

-0.63 V Yes, 880 mV difference 

1,2-dihydroxy 
anthraquinone 

O

O

OH

OH

 

-0.73 V Yes, 1 V difference 

1,2-dihydroxy, 3-
sulfonic acid 
anthraquinone 

O

O

OH

OH

SO3H

 

-0.75 V Yes, 930 mV difference 
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Potential to increase cell voltage by 
substitution



Next Steps

• Increase the solubility of stable redox molecules to ensure high 
concentrations.

• Develop methods of sulfonation for the non-participating ring.

• Complete the characterization in alkaline media

• Down-select molecules for full-cell testing 

• Pursue further molecular designs to avoid oligomer formation. 

• Explore the bifunctional nature of stabilized redox molecules in full 
cell.  
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